
Specification of Behavioural Requirements within
Compositional Multi-Agent System Design

Daniela E. Herlea1, Catholijn M. Jonker2, Jan Treur2, Niek J.E. Wijngaards1,2

1 University of Calgary, Software Engineering Research Network
 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

 Email: danah@cpsc.ucalgary.ca
URL: http://www.cpsc.ucalgary/~danah

2 Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

Email: {jonker, treur, niek}@cs.vu.nl
URL: http://www.cs.vu.nl/{~jonker, ~treur, ~niek}

Abstract. In this paper it is shown how informal and formal specification
of behavioural requirements and scenarios for agents and multi-agent
systems can be integrated within multi-agent system design. In particular, i t
is addressed how a compositional perspective both on design descriptions
and specification of behavioural requirements can be exploited. The
approach has been applied in a case study: the development of a mediating
information agent. It is shown that compositional verification benefits
from the integration of requirements engineering within the design process.

1 Introduction

Agent systems are among the most complex of systems to develop (cf. [20], [23]).
The autonomy in the behaviour of the agents contributes inherently to this
complexity. The tasks performed by the individual agents can be simple or complex in
itself, but the agents’ autonomy makes the emergent behaviour of the complete multi-
agent system both hard to design and hard to verify. Nevertheless, in many
applications it is required that the agents cooperate with each other and the users in a
in some sense coordinated manner. Often it is essential to analyse requirements on the
behaviour of the overall multi-agent system in relation to behavioural properties of
the individual agents, in order to develop a system with the right properties.

Within multi-agent system development, the emphasis is often on specification of
the system architecture that is designed, and on the implementation of this design. If
requirements are considered, they are kept implicit or informal. In principle, the
required behavioural properties play a heuristic role: the system design is made up in
such a manner that the system behaviour does what is needed, although it is not
explicitly specified what that means.

Requirements Engineering (cf. [5], [18], [21]) addresses the development and
validation of methods for eliciting, representing, analysing, and confirming system
requirements. Requirements express intended properties of the system, and scenarios
specify use-cases of the intended system (i.e., examples of intended user interaction
traces), usually employed to clarify requirements. Requirements and scenarios can be
expressed in various degrees of formality, ranging from unstructured informal
representations (usually during initial requirements acquisition) to more structured
semi-formal representations and formal representations.

Requirements can be specified for a multi-agent system as a whole, but also for
agents within a multi-agent system, and for components within agents. Starting from
behavioural requirements for the system as a whole, by requirement refinement
behavioural properties of agents can be identified, and, in a further step, for
components within an agent. Such an approach fits quite well in compositional multi-
agent system design, for example, as discussed in [3], and actually makes part of the
heuristics of the design process explicit. One of the underlying assumptions is that
such a compositional design method will lead to designs that are more transparent,
better maintainable, and can be (partially) reused more easily within other designs. The
process of requirements refinement defines the different process abstraction levels in
more detail. On the basis of refinement of the requirements (and scenarios) for the
entire system, system components are identified: agents, users and world components.
For each of these components of the system, a specific sub-set of the refined
requirements and scenarios is imposed to ensure that the system as a whole satisfies
the overall requirements and scenarios. Also further refinement of the requirements and
scenarios imposed on an agent leads to the identification of components within the
agent, and their properties. The different refinement levels in requirements and
scenarios are related to levels of process abstraction in the compositional design
description being designed.

Within a compositional verification process, after a system has been designed,
formalised behavioural requirements play a main role; cf. [17]. A verification process
for an existing design often has a high complexity in two respects. On the one hand,
the formal formulations of the properties at the different process abstraction levels
have to be found. If no explicit requirements engineering has been performed, this can
be very hard indeed, as the search space for requirement formulations is often not small
and verification is only useful with respect to the appropriate requirements, and the
properties and assumptions on which they depend. On the other hand, proofs have to
be found. If, as part of the design process, requirements have been (formally) specified
as well, these can be used as a starting point for a verification process, thus reducing
the complexity of verification, by eliminating the search space for the requirement
formulations at different process abstraction levels. If no requirements have been
specified during the design process, during verification a form of reverse engineering
has to be performed to obtain the (required) properties at the different process
abstraction levels afterwards.

The methodological approach proposed results in the use of two (compositional)
specification languages:

• a language to specify design descriptions
• a language to specify (behavioural) requirements and scenarios

Within the compositional multi-agent system development method DESIRE (cf. [3]; for
a real-world case study see [2]), the first of these languages is already available; the
second is currently being added. Each of these languages fulfills its own purpose. A
language to specify a (multi-agent) system architecture needs features different from a
language to express properties of such a system. Therefore, in principle the two
languages are different. The distinction between these specification languages follows
the distinction made in the AI and Design community (cf. [13], [14]) between the
structure of a design object on the one hand, and function or behaviour on the other
hand. For both languages informal, semi-formal and formal variants are needed, to
facilitate the step from informal to formal. Formal models specified in the two
languages can be related in a formal manner: it is formally defined when a design
description satisfies a requirement or scenario specification, and this formal relation is
used to verify that the design description fulfills the requirements and scenarios.

In this paper it is shown how specification of behavioural requirements and
scenarios from informal to formal can be integrated within multi-agent system design,
in particular for a compositional design method with an underlying formal conceptual
model for design descriptions: DESIRE. The approach has been applied in a case study:
the development of a mediating information agent.

The example domain for the case study is the development of a multi-agent system
that keeps its human users informed with respect to their interests and the rapidly
changing available information on the World Wide Web. The task of the multi-agent
system is to inform each of its users on information available (e.g., papers) on the
World Wide Web that is within their scope of interest. The sources of information are
the World Wide Web, but also information providing agents that operate on the World
Wide Web, for example, agents related to Web sites of research groups, which
announce new papers included in their web-site.

Different representations of requirements and scenarios from informal via semi-
formal to formal are discussed in Section 2. The use of requirements and scenarios
refinement across process abstraction levels is explained further in Section 3. The
integration of the verification process and Requirements Engineering is the topic of
Section 4. Section 5 concludes the paper with a discussion.

2 Informal and Formal Representation

In Requirements Engineering the role of scenarios, in addition to requirements, has
gained more importance; e.g., see [11], [22]. Scenarios or use cases are examples of
interaction sessions between the users and a system [22]; they are often used during
the requirement elicitation, being regarded as effective ways of communicating with
the stakeholders (i.e., domain experts, users, system customers, managers, and
developers). Scenarios, for example, are also employed to formalise interactions
among components within the system. Having both requirements and scenarios in a

requirements engineering process provides the possibility of mutual comparison: the
requirements can be verified against the scenarios, and the scenarios can be verified
against the requirements. By this mutual verification process, ambiguities and
inconsistencies within and between the existing requirements or scenarios may be
identified, but also the lack of requirements or scenarios: scenarios may be identified
for which no requirements were formulated yet, and requirements may be identified for
which no scenarios were formulated yet.

informal
scenarios

semi-formal
requirements

semi-formal
scenarios

formal
requirements

formal
scenarios

relations between
requirements and scenarios

degree of
formalisation

informal
requirements

Fig. 1. Representations from informal to formal.

As stated above, requirements and scenarios are seen as effective ways of
communicating with the stakeholders. This can only be true if requirements and
scenarios are represented in a well-structured and easy to understand manner and are
precise enough and detailed enough to support the development process of the system.
Unfortunately, no standard language exists for the representation of requirements and
scenarios. Formats of varying degrees of formality are used in different approaches.
Informally represented requirements and scenarios are often best understood by the
stakeholders (although approaches exist using formal representations of requirements
in early stages as well: [9]). Therefore, continual participation of stakeholders in the
process is possible. A drawback is that the informal descriptions are less appropriate
when they are used as input to actually construct a system design. On the other hand,
an advantage of using formal descriptions is that they can be manipulated
automatically in a mathematical way, which enables verification and the detection of
inconsistencies. Furthermore, the process of formalising the representations can be
used as a way to disambiguate requirements and scenarios. At the same time however,
a formal representation is less appropriate as a communication means with the
stakeholders. Therefore, in our approach in the overall development process, different
representations are used: informal and/or structured semi-formal representations
(obtained during the process of formalisation) resulting from cooperation between
stakeholders and designers of the system, and formal representations to be used by the
designers during the construction of the design.

Independent of the measure of formality, each requirement and each scenario can be
represented in a number of different ways, and/or using different representation
languages, e.g., informally by way of use cases in UML. Examples are given below.

2 . 1 Informal Representations

Different informal representations can be used to express the same requirement or
scenario. Representations can be made, for example, in a graphical representation
language, or a natural language, or in combinations of these languages, as is done in
UML’s use cases (cf. [12], [15]). Scenarios, for instance, can be represented using a
format that supports branching points in the process, or in a language that only takes
linear structures into account.

For the example application, first a list of nine, rather imprecisely formulated
initial requirements was elicited. As an example, the elicited requirement on ‘keeping
aware’ is shown below.

Example of an informal initial top level requirement:

L0.R1 The user needs to be kept ‘aware’ of relevant new information on the World Wide Web.

Requirement L0.R1 is based on the information elicited from the interview with the
stakeholder. The following scenario was elicited from the stakeholder as well:

L0.Sc1
1. user generates an awareness scope : AS1
2. user is waiting
3. new information is made available on the World Wide Web
4. user receives results for awareness scope AS1: ASR1

The requirement L0.R1 was analysed and reformulated into a more precise requirement.
In the (reformulated) scenarios and requirements, terminology is identified, relevant for
the construction of domain ontologies (words in bold-face are part of the domain
ontologies being acquired).

Example of a reformulation of a requirement at top level:

L0.R1.1 The user will be notified of new information (on the World Wide Web) on an awareness
scope
after the user has expressed the awareness scope and
just after this new information becomes available on the World Wide Web,
unless the user has retracted the awareness scope (awareness scope retraction).

2 . 2 Structured Semi-formal Representations

Both requirements and scenarios can be reformulated to more structured and precise
forms. To check requirements for ambiguities and inconsistencies, an analysis that
seeks to identify the parts of a given requirement formulation that refer to input and to
output of a process is useful. Such an analysis often provokes a reformulation of the
requirement into a more structured form, in which the input and output references are
made explicitly visible in the structure of the formulation. Moreover, during such an
analysis process the concepts that relate to input can be identified and distinguished
from the concepts that relate to output: acquisition of a (domain) ontology (cf. [19]) is

integrated within requirements engineering. Possibly the requirement splits in a
natural manner into two or more simpler requirements. This often leads to a number
of new (representations of) requirements.

The ontology later facilitates the formalisation of requirements and scenarios, as the
input and output concepts are already defined, at least at a semi-formal level. For
nontrivial behavioural requirements a temporal structure has to be reflected in the
representation. This entails that terms such as ‘at any point in time’, ‘at an earlier
point in time’, ‘after’, ‘before’, ‘since’, ‘until’, and ‘next’ are used to clarify the
temporal relationships between different fragments in the requirement.

For the informally specified requirement L0.R1.1, for example, the following
reformulation steps can be made:

At any point in time
The user will receive on its input results for awareness scope , i.e., new information on
an awareness scope
after the user has generated on its output the awareness scope and
just after this new information becomes available as output of the World Wide Web ,
unless by this time the user has generated on its output an awareness scope retraction.

At any point in time,
if at an earlier point in time the user has generated on its output an awareness scope, and
since then the user has not generated on its output an awareness scope retraction referring
to this awareness scope, and
just before new information within this awareness scope becomes available as output of
the World Wide Web ,
then the user will receive on its input this new information within the awareness scope .

Based on these reformulation steps the following semi-formal structured requirement
can be specified:

L0.R1.2 At any point in time,
if
 at an earlier point in time

user output : an awareness scope, and
 since then

not user output : retraction of this awareness scope, and
 just before

World Wide Web output: new information within this awareness scope
then

user input: new information within this awareness scope

In summary, to obtain a structured semi-formal representation of a requirement, the
following is to be performed:

• explicitly distinguish input and output concepts in the requirement formulation,
• define (domain) ontologies for the input and output information,
• make the temporal structure of the statement explicit using words like, ‘at any

point in time’, ‘at an earlier point in time’, ‘after’, ‘before’, ‘since’, ‘until’, and
‘next’.

For scenarios, a structured semi-formal representation is obtained by:

• explicitly distinguish input and output concepts in the scenario description,
• define (domain) ontologies for the input and output information,
• represent the temporal structure described implicitly in the sequence of events.

The interplay between requirements elicitation and analysis and scenario elicitation and
analysis plays an important role. To be more specific, it is identified which
requirements and scenarios relate to each other; for example, L0.R1.2 relates to L0.Sc1.2.
If it is identified that for a requirement no related scenario is available yet (isolated
requirement), then a new scenario can be acquired.

L0.Sc1.2
1. user output: awareness scope
2. user is waiting
3. World Wide Web output: new information
4. user input: results for awareness scope

2 . 3 Formal Representations

A formalisation of a scenario can be made by using formal ontologies for the input
and output, and by formalising the sequence of events as a temporal trace. Thus a
formal temporal model is obtained, for example as defined in [4] and [17]. Of course
other formal languages can be chosen as well as long as they allow the formalisation
of temporal dependencies that can occur within behavioural requirements without
having to make further design choices first.

To obtain formal representations of requirements, the input and output ontologies
have to be chosen as formal ontologies. The domain ontologies acquired during the
reformulation process for the example application were formalised; part of the domain
ontologies related to the focus on requirements and scenarios is shown below:

ontology element: explanation:
SCOPE a sort for the search scopes and awareness scopes

USER a sort for the names of different users

PERSISTENCE_TYPE a sort to distinguish between persistent and incidental
scopes

INFO_ELEMENT a sort for the result information

result_for_scope a binary relation on INFO_ELEMENT and SCOPE

persistent, incidental objects of sort PERSISTENCE_TYPE corresponding to the
difference in persistence between an awareness scope and a
search scope

input:

is_interested_in a ternary relation on USER, SCOPE and
PERSISTENCE_TYPE

output:

result_for_user a ternary relation on INFO_ELEMENT, USER and SCOPE

In addition, the temporal structure, if present in a semi-formal representation, has to
be expressed in a formal manner. Using the formal ontologies, and a formalisation of
the temporal structure, a mathematical language is obtained to formulate formal
requirement representations. The semantics are based on compositional information
states which evolve over time. An information state M of a component D is an

assignment of truth values {true, false, unknown} to the set of ground atoms that play a
role within D. The compositional structure of D is reflected in the structure of the
information state. A formal definition can be found in [4] and [17]. The set of all
possible information states of D is denoted by IS(D). A trace M of a component D

is a sequence of information states (Mt)t ∈ N in IS(D). Given a trace M of component

D, the information state of the input interface of component C at time point t of the
component D is denoted by stateD(M , t, input(C)), where C is either D or a sub-component

of D. Analogously, stateD(M , t, output(C)), denotes the information state of the output

interface of component C at time point t of the component D. These formalised
information states can be related to statements via the formally defined satisfaction
relation |=. Behavioural properties can be formulated in a formal manner, using

quantifiers over time and the usual logical connectives such as not, &, ⇒ . An

alternative formal representation of temporal properties (using modal and temporal
operators) within Temporal Multi-Epistemic Logic can be found in [10].

Examples of formal representations of top level requirements:
L0.R1.2 is formalised by L0.R1.3: The first part of this requirement addresses the case
that information relating to an awareness scope is already present, whereas the second
part addresses the case that the information becomes available later.

L0.R1.3:
∀M , t

[stateS(M , t, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent) &
 stateS(M , t, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE)]

⇒ ∃t’ > t
 stateS(M , t’, input(U)) |= result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)

&

∀M , t1, t2>t1

 stateS(M , t1, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent) &

 stateS(M , t2, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE) &
 ∀t’ [t1 < t’ < t2 ⇒
 [not stateS(M , t’, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE) &

 not stateS(M , t’, output(U)) |= not is_interested_in(U:USER, S:SCOPE, persistent)]
⇒ ∃t3 > t2

 stateS(M , t3, input(U)) |= result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)

Example of a formal representation of a top level scenario
The following formal scenario representation relates to the second formal requirement
representation expressed above. Note that point at time point 2 nothing happens,
which corresponds to the waiting of the user, of course in another (but similar)
scenario the waiting could take more time.

L0.Sc1.3:
 stateS(M , 1, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent)
 stateS(M , 3, output(WWW)) |= result_for_scope(I:INFO_ELEMENT, S:SCOPE)
 stateS(M , 4, input(U)) |= result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)

To summarise, formalisation of a requirement or scenario on the basis of a structured
semi-formal representation is achieved by:

• choosing formal ontologies for the input and output information
• formalisation of the temporal structure in a formal mathematical language

Checking a temporal formula F, which formally represents a requirement, against a
temporal model M , formally representing a scenario, means that formal verification
of requirements against scenarios can be done by model checking. A formal
representation M of a scenario S and a formal representation F of a requirement are
compatible if the temporal formula is true in the model. For example, the temporal
formula L0.R1.3 is indeed true in scenario L0.Sc1.3: the result was available in the world
at time point 4 in the scenario (after the user generated the persistent interest on its
output at time point 1), at time point 5 (which is later than 4) the user has the
information on its input.

3 Requirements at Different Process Abstraction Levels

In this section three levels of abstraction are discussed: requirements for the system as
a whole, requirements for an agent within the system, and requirements for
components within an agent. Example requirements at different levels of process
abstraction for the example domain are used as illustration.

3.1 Requirements for the Multi-agent System as a Whole

First, the requirements for the multi-agent system as a whole, including interaction
with users are considered. The requirements and scenarios in the previous sections are
formulated with respect to the users and the World Wide Web, which is considered as
the given environment. Otherwise no assumptions were made on the design of the
multi-agent system that is to support the users. For example, no specific agents were
assumed as yet. The requirements and scenarios as presented in Section 2 express the
desired behaviour from a global perspective, and only refer to input and output of users
and the environment (the World Wide Web). By refining these requirements and
scenarios, more elementary units of behaviour can be identified (behavioural
refinement); which units of behaviour are chosen is a specific design decision. For
example, it can be postulated that on the basis of specific user outputs concerning its
interest, an unpersonalized scope of interest is identified:

L0.R2 For each search scope of a user, an unpersonal incidental need for information on the
scope of the search scope is generated.

L0.R3
a. For each awareness scope of a user, an unpersonal persistent need for information on

the scope of the awareness scope is generated.
b. For each awareness scope retraction of a user, an unpersonal persistent need for

information retraction on the scope of the awareness scope is generated.

Available new information is to be presented to those users interested in that
information:

L0.R4 If new information is available , then each user with an awareness scope that has not been
retracted by that user and that matches that information will receive that information.

L0.R5 If there is a persistent need for information that has not been retracted and information
becomes newly available on the World Wide Web that matches this persistent need, then
this information is identified as new information.

Note that new ontology elements are created that need not be part of the ontologies of
a user input or output and are not meant to be part of these ontologies. In relation
with the refinements L0.R2 to L0.R5 the design decision is made to identify at least two
types of agents: Personal Assistant agents, that are in direct contact with users, and
Information Provider agents, that only handle unpersonalized needs for information.
Requirements L0.R2 and L0.R3 are imposed on the Personal Assistants, requirements
L0.R4 and L0.R5 are imposed on the co-ordinated behaviour of both types of agents. The
interfaces of the Personal Assistants and Information Providers will occur in semi-
formal reformulations of the above requirements.

A global design of the multi-agent system is described in Fig. 2, in which two
users, one Personal Assistant, two Information Providers, and the World Wide Web
are depicted. The Personal Assistant has to co-operate with human agents (its users),
and the Information Provider agents. The task of the Personal Assistant is to inform
each of its users on information available (e.g., papers) on the World Wide Web that
is within their scope of interest. Information on available papers is communicated to
the Personal Assistant by Information Providers. The Personal Assistant is also
capable itself of searching for information on the World Wide Web.

user

user

personal
assistant

WWW

information
provider

information
provider

Fig. 2. Global multi-agent system description.

Given the design choice additional level L0 requirements can be formulated in terms of
input and output of the agents and processes as identified:

L0.R6.2a /* Refinement of L0.R1.2 */
At any point in time
The user shall receive on its input results for awareness scope
after the user has generated on its output that awareness scope and
just after new information relevant for that awareness scope becomes available on the
input of the Personal Assistant
and the Personal Assistant did not receive on its input an awareness scope retraction
before the new information was received on the Personal Assistants input.

L0.R6.2b /* Refinement of L0.R1.2 */
At any point in time
The Personal Assistant will generate on its output results for awareness scope for a user
after it has received on its input an awareness scope of that user and
just after new information relevant for that awareness scope becomes available on the
output of the World Wide Web or on the output of one of the Information Providers
and the Personal Assistant did not receive on its input an awareness scope retraction
before the new information was received on the Personal Assistants input.

L0.R2.2 At any point in time
If a user has generated on its output a search scope , then the Personal Assistant will
generate on its output an unpersonal incidental need for information on the scope of the
search scope.

L0.R3.2 At any point in time
a. If a user has generated on its output an awareness scope,

then the Personal Assistant will generate on its output an unpersonal persistent need for
information on the scope of the awareness scope is generated.

b. If a user has generated on its output an awareness scope retraction,
and no other users have generated the same awareness scope without having it retracted,
then the Personal Assistant will generate on its output an unpersonal persistent need for
information retraction on the scope of the awareness scope is generated.

L0.R4.2 At any point in time
a. If the Personal Assistant receives new information on its input ,

then each user with an unretracted awareness scope matching that information will receive
that information on its input.

b. If an Information Provider receives on its input information that it identifies as new
information,
and the new information matches an unretracted persistent need for information that
the Information Provider received on its input from the Personal Assistant,
then the Personal Assistant will receive this new information on its input.

L0.R5.2 At any point in time
If an Information Provider receives on its input a persistent need for information and
later information becomes newly available on the World Wide Web that matches this
persistent need, and this persistent need was not retracted before the new information
became available,
then this information is identified as new information and generated on the output of the
Information Provider.

In summary, for the current problem a design choice was made to design the system as
a multi-agent system instead of as a single component system. The agents of the
multi-agent system, the users, and the World Wide Web are all components of the
system at the same level of process abstraction. For the top level, L0, the
requirements pose constraints on more than one component of the multi-agent system.
In other words the L0 requirements either specify the global purpose behaviour of the
system (like L0.R1) or they specify the behaviour of the whole system in terms of
relations between the behaviour of several of its components (L0.R2 to L0.R6). The
latter are also requirements on the composition relation of the multi-agent system.
Before the individual components can be designed, also requirements are to formulated
on the behaviour of those individual agents and the component WWW.

requirements scenarios

refined
requirements

refined
scenarios

 process
abstraction
 level 0

 process
abstraction
 level n

 process
refinement
 relations

relations between
requirements and scenarios

 process
 refinement
 relations

Fig. 3. Process abstraction level refinements.

3 . 2 Requirements for an Agent within the System

Requirements formulated on the behaviour of those individual agents and the
component WWW are requirements of the next process abstraction level (see Fig. 3),
in this case level L1. Again these requirements can be formulated informally, semi-
formally, or formally. For example, the following requirements can be imposed on the
Personal Assistant agent (abbreviated as PA):

L1.P1 For each incoming search scope of a user, the PA shall initiate an incidental quest for useful
information on that scope by generating on its output:

a. communication to Information Providers regarding an incidental need for information
on the scope of the search scope.

b. observation to be performed on the World Wide Web regarding the scope of the search
scope.

L1.P2 For each incoming awareness scope of a user, the PA shall initiate an persistent quest for
useful information on that scope by :

a. only once generating on its output communication to Information Providers regarding a
persistent need for information on the scope of the awareness scope.

b. repeatedly generating on its output an observation to be performed on the World Wide
Web regarding the scope of the awareness scope,
until the PA receives on its input a corresponding awareness scope retraction.

L1.P3 At any point in time
If the PA receives new informationon its input ,
then for each user with an awareness scope matching that information the PA will generate
on its output an awareness scope result for that user,
unless the PA received a corresponding awareness scope retraction before it received the
new information.

Similarly, requirements (or assumed requirements) can be formulated for the other
components of the multi-agent system. Again it is possible to define more elementary
units of behaviour by refining some of the requirements. Whether it is desirable to do
so depends on whether or not the constructed requirements are considered sufficiently
elementary to serve as a starting point for a transparent design of each of the
components. For some of the components the required behaviour might still be too

complex for this aim. In that case, the requirements of those components can be
refined in terms of their behaviour. For example, a possible behavioural refinement of
L1.P3 includes the following three requirements:

L1.P4 The PA maintains a profile of its users that satisfies the following:
a. contains the unretracted awareness scopes of that user.
b. An awareness scope is added to the profile if it is received on PA’s input.
c. An awareness scope is removed from the profile if a corresponding awareness scope

retraction is received on PA’s input.

L1.P5 The PA is capable of matching new informationreceived on its input with awareness
scopes and determine the appropriateness of the information for the users that issued the
awareness scopes.

L1.P6 The PA is capable of interpreting incoming communication information and generating
communication information to other agents.

In relation to the behavioural refinements of requirements, a process refinement can be
created if this is deemed appropriate. Furthermore, if a process refinement is deemed
appropriate, then the choice still has to be made whether the current process
abstraction level is extended with more processes (for example, whether the Personal
Assistant agent is replaced by a number of agents at the same process abstraction
level), or that an additional process abstraction level is created within one of the agents
or processes (for example, composing the Personal Assistant of a number of sub-
components). In this case, the latter alternative is chosen. For this choice a number of
additional level L1 requirements have to be formulated to specify the behavioural
properties of those sub-processes in their relation to each other (the behaviour of the
sub-processes in relation to each other is global with respect to level L1), and a
number of L2 requirements have to be formulated to specify the behavioural properties
of the individual sub-processes (this behaviour is local with respect to level L2). Before
considering the requirements of level L2, first the sub-components must be identified
and their global level L1 behaviour analyzed.

Based on the requirements L1.P4 to L1.P6 a design decision is made to identify at least
three sub-components for the Personal Assistant: a component to maintain the user
profiles (called Maintenance of Agent Information), a component capable of matching
information with awareness scopes (called Proposal Determination), and a component
that handles communication with other agents (called Agent Interaction Management).
Requirement L1.P4 is imposed on component Maintenance of Agent Information
(abbreviated by MAI), requirement L1.P5 on component Proposal Determination (PD),
and L1.P6 is imposed on component Agent Interaction Management (AIM). For the
other requirements of the Personal Assistant similar behavioural refinements can be
made, this results in the addition of a few other sub-components. The next level of
process abstraction of the design of the Personal Assistant is described in Fig. 4.
Apart from the already mentioned components, the Personal Assistant also consist of
a component called World Interaction Management (abbreviated by WIM, used for
observing the World Wide Web and interpreting the observation results), a component
called Maintenance of World Information (abbreviated by MWI, used to maintain
information on the World Wide Web), and a component called Own Process Control
(abbreviated by OPC, used to determine the strategies, goals, and plans of the agent).

 communicated
 info

 observation
 results
 to wim

 observed
 agent

info

 communicated
 agent
 info

Agent task control

Own
Process
Control

Maintenance
of Agent

Information

Proposal
Determination

Maintenance
of World

Information

Agent
Interaction

Management

World
Interaction

Management

 own process info to wim

 own process info to aim

 own
 process
 info to
 mai

 own
 process
 info to
 mwi

 info to be communicated

 communicated
 info to pd

 communicated world info

 observations and actions

 observed
 info to pd

 observed
 world info

 action and observation info from pd

 communication info from pd

 agent info to opc
 world info to opc

 agent info to wim

 agent info to aim

 world info to aim

 world info to wim

Fig. 4. Internal description of the Personal Assistant.

Given the above design choices, additional level L1 requirements can be formulated:

L1.P7 Incoming communication information received on the input of the PA is interpreted by AIM
into new information, awareness scopes, awareness scope retractions, and search
scopes.

a. AIM provides MAI with awareness scopes and awareness scope retractions.
b. AIM provides PD with new information and search scopes.
c. AIM provides MWI with new information.

L1.P8 PD provides AIM with awareness scope results and search scope results that are to be
communicated to a user.

L1.P9 MAI provides PD with the current awareness scopes and search scopes.

3 . 3 Requirements for a Component within an Agent

The individual behavioural properties of the components distinguished at process
abstraction level L1 are specified by requirements at abstraction level L2. A few
examples of level L2 requirements are:

L2.PD1 PD matches the current awareness scopes with new information it receives; if a match is
found, then PD generates a corresponding awareness scope result.

L2.AIM1 If AIM receives an awareness scope result, then AIM generates an outgoing
communication containing that result for the relevant user.

4 Requirements Specification and Verification

In this section some of the methodological aspects are summarized and discussed. In
particular, the relation between requirements specification and compositional
verification is addressed.

4.1 Methodological Aspects

Within the proposed methodology, during a design process, in relation to behavioural
refinements of requirements, a process refinement is created if this is deemed
appropriate. A refinement of a behavioural requirement defines requirements on more
elementary units of behaviour. Starting with behavioural requirements of the entire
system, on the basis of requirement refinement it can be decided about the agents to
use in the system, and in particular, which agent is meant to show which type of
behaviour. In a next step, for each of the agents it can be decided whether it is
desirable to refine the requirements for the agent further, depending on whether or not
the requirements constructed for the agent are elementary enough to serve as a starting
point for a transparent design of the agent itself. For some of the agents the required
individual behaviour may still be too complex to lead to a transparent design. In that
case, the behavioural requirements of those agents can be refined. This can lead to the
identification of requirements on more elementary units of behaviour within the agent
and, in relation to this, to different components within the agent to perform this
behaviour.

highest process abstraction level:
required behavioural properties of entire system

/ | \
next process abstraction level:

behavioural properties of agents

/ | \ / | \ / | \
 next process abstraction level:

behavioural properties of components within agents

/ | \ / | \ / | \ / | \ / | \
.

(and so on)

.

Fig. 5. Behavioural properties at different process abstraction levels

This requirements refinement process can be iterated for some of the agent
components, which, depending on the complexity of the agent, may lead to an
arbitrary number of process abstraction levels within the agent (see Fig. 5). The result
of this process is the identication of different process abstraction levels, from the level
of the entire system, to the level of each of the agents separately, and further down to
more specific processes within agents.

Sets of requirements at a lower level can be chosen in such a way that they realise a
higher level requirement, in the following sense:

• given the process composition relation defined in the design description,
• if the chosen refinements of a given requirement are satisfied,
• then also the original requirement is satisfied.

This defines the logical aspect of a behavioural refinement relation between
requirements. Based on this logical relation, refinement relationships can also be used
to verify requirements: e.g., if the chosen refinements of a given requirement all hold
for a given system description, then this requirement can be proven to hold for that
system description. Similarly, scenarios can be refined to lower process abstraction
levels by adding the interactions between the sub-processes. At each level of
abstraction, requirements and scenarios employ the terminology defined in the
ontology for that level.

4.2 Relation to Compositional Verification

The methodological approach to the creation of different process abstraction levels in
relation to requirements refinement has a natural connection to the process of
compositional verification (cf. [17]). The purpose of verification is to prove that,
under a certain set of assumptions, a system will adhere to a certain set of properties,
expressed as requirements and scenarios. In order to prove that a system is behaving as
required, not only a complete specification of the system is necessary, but also the set
of requirements and scenarios to verify the system against. If this set is not available,
the verification process is hampered to a great extent, because formulating sufficiently
precise requirements (and scenarios) for an existing system is nontrivial. For the
purpose of verification it has turned out useful to exploit compositionality (cf. [17]).

Compositional verification as described in [17] takes the process abstraction levels
used within the system and the related compositional structure of the system into
account. The requirements and scenarios are formulated formally in terms of temporal
semantics. During the verification process the requirements and scenarios of the
system as a whole can be derived from properties of agents (one process abstraction
level lower) and these agent properties, in turn, can be derived from properties of the
agent components (again one abstraction level lower), and so on (see Fig. 5).

Primitive components (those components that are not composed of others) can be
verified using more traditional verification methods. Verification of a (composed)
component at a given process abstraction level is done using:

• properties of the sub-components it embeds
• a specification of the process composition relation
• environmental properties of the component (depending on the rest of the system,

including the world).

This exploits the compositionality in the verification process: given a set of
environmental properties, the proof that a certain component adheres to a set of
behavioural properties depends on the (assumed) properties of its sub-components, and
the composition relation: properties of the interactions between those sub-
components, and the manner in which they are controlled. The assumptions under
which the component functions properly, are the properties to be proven for its sub-
components. This implies that properties at different levels of process abstraction play
their own role in the verification process. A condition to apply a compositional
verification method is the availability of an explicit specification of how the system
description at an abstraction level is composed from the descriptions at the adjacent
lower abstraction level.

Compositionality in verification reduces the search space for the properties to be
identified, and the proofs, and supports reuse of agents and components. Complexity
in a compositional verification process is two-fold: both the identification of the
appropriate properties at different levels of abstraction and finding proofs for these
properties can be complex. If the properties already are identified as part of the
requirements engineering process, this means that the complexity of part of the
verification process is reduced: ‘only’ the complexity of finding the proofs remains.
Our experience in a number of case studies is that having the right properties reduces
much more than half of the work for verification: due to the compositionality, at each
process abstraction level the search space for the proofs is relatively small.

If no explicit requirements engineering has been performed, finding these properties
for the different process abstraction levels can be very hard indeed, as even for a given
process abstraction level the search space for possible behavioural requirement
formulations can be nontrivial. If as part of the design process requirements have been
(formally) specified as well at different levels of process abstraction, these can be used
as a useful starting point for a verification process; they provide a detailed map for the
verification process and thus reduce the complexity by eliminating the search space for
the requirement formulations at different process abstraction levels.

Integration of the requirements engineering process within the system design
process leads to system designs that are more appropriate for verification than arbitrary
architectures. Moreover, reuse is supported; for example, replacing one component by
another is possible without violating the overall requirements and scenarios, as long
as the new component satisfies the same requirements and scenarios as the replaced
component. In [16] a requirements engineering process model is described that can be
used to support the requirements engineering process. Note that the idea of refinement
is well-known in the area of (sequential) programs, e.g., [6]. The method of
compositional requirements specification proposed here exploits a similar idea in the
context of behavioural requirements.

5 Discussion

Requirements and scenarios describe the required properties of a system (this includes
the functions of the system, structure of the system, static properties, and dynamic
properties). In applications of agent systems, the dynamics or behaviour of the system
plays an important role in description of the successful operation of the system.
Requirements and scenarios specification has both to be informal or semi-formal (to
be able to discuss them with stakeholders) and formal (to disambiguate and analyse
them and establish whether or not a constructed model for a multi-agent system
satisfies them).

As requirements and scenarios form the basis for communication among
stakeholders (including the system developers), it is important to maintain a document
in which the requirements and scenarios are organised and structured in a
comprehensive way. This document is also important for maintenance of the system
once it has been taken into operation. The different activities in requirements
engineering lead to an often large number of inter-related representations of
requirements and scenarios. The explicit representation of these traceability relations is
useful in keeping track of the connections; traceability relationships can be made
explicit (see Figs. 1 and 3): reformulation relations among requirements (resp.,
scenarios) at the same process abstraction level, behavioural refinement relations
between requirements (resp., scenarios) at different process abstraction levels, and
satisfaction relations between requirements and scenarios. For the case-study, these
relationships have been specified using hyperlinks. This offers traceability; i.e.,
relating relevant requirements and scenarios as well as the possibility to ‘jump’ to
definitions of relevant requirements and scenarios.

In summary, the main lessons learned from our case studies are:

• Integration of requirements and scenarios acquisition with ontology acquisition
supports the conceptual and detailed design of the input and output interfaces of
agents and agent components

• Refinement of requirements and scenarios in terms of requirements and scenarios on
more elementary behaviours at the top level supports the identification of agents
and the allocation of behaviours to agents

• Refinement of requirements and scenarios in terms of requirements and scenarios on
more elementary behaviours within an agent supports the identification of agent
components and the allocation of functionality to agent components

• A compositional approach to requirements and scenarios specification provides a
basis for the design rationale: a documentation of the design choices made and the
reasons for them

• A compositional approach to requirements and scenarios specification as an integral
part of the multi-agent system design process strongly facilitates compositional
verification of the designed system.

• The process of achieving an understanding of a requirement involves a large number
of different formulations and representations, gradually evolving from informal to
semi-formal and formal.

• Scenarios and their formalisation are, compared to requirements, of equal
importance.

• Keeping track on the various relations between different representations of
requirements, between requirements and scenarios, and many others, is supported by
hyperlink specifications within a requirements document.

As a result of these explorative studies it is proposed that a principled design method
for multi-agent systems should include two specification languages:

• a language to specify design descriptions
• a language to specify (behavioural) requirements and scenarios

Each of these languages has its own chacteristics to fulfill its purpose. The distinction
is similar to the one made in the AI and Design community [13], [14] between the
structure of a design object on the one hand, and function or behaviour on the other
hand. For both languages informal, semi-formal and formal variants have to be
available to support the step from informal to formal, and, for example to support
communication with stakeholders.

A formal specification language of the first type, and a semi-formal and graphical
variant of this language, is already available in the compositional multi-agent system
development method DESIRE, and is supported by the DESIRE software environment.
This language was never meant to specify requirements or scenarios; a language to
specify a (multi-agent) system architecture at a conceptual design level needs features
different from a language to express properties of a system. In current research, further
integration of the approach to requirements engineering as proposed in this paper in
the compositional development method for multi-agent systems, DESIRE and, in
particular, in its software environment is addressed.

The requirements and scenarios for agent systems often have to address complex
behavioural properties. In comparison, it is not clear how, for example, in UML more
complex behavioural requirements can be specified; use cases are informal, and activity
diagrams seem too design specific and cannot express the necessary more complex
temporal dependencies relevant to both requirements and scenarios. In the development
of UML different representations of behavioural requirements and scenarios was not an
issue [12], [15]. In [7], [8] an approach is presented in which more complex
behavioural properties can be specified. A difference to our work is that no
compositionality is exploited in requirements specification and verification. In recent
research in knowledge engineering, identification and formalisation of properties of
knowledge-intensive systems is addressed, usually in the context of verification or
competence assessment of complex tasks; e.g., [1]. Such properties can be used as a
basis for requirement specifications, and may play a role within specific agent
compomenents.

References

1. Benjamins, R., Fensel, D., and Straatman, R., Assumptions of problem-solving
methods and their role in knowledge engineering. In: W. Wahlster (Ed.), Proceedings
of the Twelfth European Conference on Artificial Intelligence, ECAI'96, John Wiley
and Sons, 1996, pp. 408-412.

2. Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and Treur, J. Formal
specification of Multi-Agent Systems: a real World Case. In: Lesser, V. (ed.),
Proceedings of the First International Conference on Multi-Agent Systems,
ICMAS'95, MIT Press, Menlo Park, VS, 1995, pp. 25-32. Extended version in:
International Journal of Cooperative Information Systems, M. Huhns, M. Singh,
(eds.), special issue on Formal Methods in Cooperative Information Systems: Multi-
Agent Systems, vol. 6, 1997, pp. 67-94.

3. Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Compositional Multi-
agent System Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP World
Computer Congress, WCC'98, Conference on Information Technology and
Knowledge Systems, IT&KNOWS'98, 1998, pp. 347-360.

4. Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M., Temporal semantics
of compositional task models and problem solving methods. Data and Knowledge
Engineering, vol. 29(1), 1999, pp. 17-42.

5. Davis, A. M., Software requirements: Objects, Functions, and States, Prentice Hall,
New Jersey, 1993.

6. Dijkstra, E.W., A discipline of programming. Prentice Hall, 1976.

7. Dubois, E. (1998). ALBERT: a Formal Language and its supporting Tools for
Requirements Engineering.

8. Dubois, E., Du Bois, P., and Zeippen, J.M., A Formal Requirements Engineering
Method for Real-Time, Concvurrent, and Distributed Systems. In: Proceedings of the
Real-Time Systems Conference, RTS’95, 1995.

9. Dubois, E., Yu, E., Petit, M., From Early to Late Formal Requirements. In:
Proceedings IWSSD’98. IEEE Computer Society Press, 1998.

10. Engelfriet, J., Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent
Systems in Temporal Multi-Epistemic Logic. In: J.P. Mueller, M.P. Singh, A.S. Rao
(eds.), Pre-proc. of the Fifth International Workshop on Agent Theories,
Architectures and Languages, ATAL'98, 1998, pp. 91-106. To appear in: J.P. Mueller,
M.P. Singh, A.S. Rao (eds.), Intelligent Agents V. Lecture Notes in AI, Springer
Verlag. In press, 1999

11. Erdmann, M. and Studer, R., Use-Cases and Scenarios for Developing Knowledge-
based Systems. In: Proceedings of the 15th IFIP World Computer Congress, WCC’98,
Conference on Information Technologies and Knowledge Systems, IT&KNOWS (J.
Cuena, ed.), 1998, pp. 259-272.

12. Eriksson, H. E., and Penker, M., UML Toolkit. Wiley Computer Publishing, John
Wiley and Sons, Inc., New York, 1998.

13. Gero, J.S., and Sudweeks, F., (eds.), Artificial Intelligence in Design ’96, Kluwer
Academic Publishers, Dordrecht, 1996.

14. Gero, J.S., and Sudweeks, F., (eds.), Artificial Intelligence in Design ’98, Kluwer
Academic Publishers, Dordrecht, 1998.

15. Harmon, P., and Watson, M., Understanding UML, the Developer’s Guide. Morgan
Kaufmann Publishers, San Francisco, 1998.

16. Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E. A Formal Knowledge
Level Process Model of Requirements Engineering. In: Proceedings of the 12th
International Conference on Industrial and Engineering Applications of AI and Expert
Systems, IEA/AIE'99. Lecture Notes in AI, Springer Verlag, 1999, To appear.

17. Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent Systems: a
Formal Analysis of Pro-activeness and Reactiveness. In: W.P. de Roever, H.
Langmaack, A. Pnueli (eds.), Proceedings of the International Workshop on
Compositionality, COMPOS'97. Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998, pp. 350-380

18. Kontonya, G., and Sommerville, I., Requirements Engineering: Processes and
Techniques. John Wiley and Sons, New York, 1998.

19. Musen, M., Ontology Oriented Design and Programming: a New Kind of OO. In: J .
Cuena (ed.), Proceedings of the 15th IFIP World Computer Congress, WCC'98,
Conference on Information Technology and Knowledge Systems, IT&KNOWS'98,
1998, pp. 17-20.

20. Nwana, H.S., and Ndumu, D.T., A Brief Introduction to Software Agent Technology.
In Jennings, N.R., and Wooldridge, M. (eds.), Agent Technology: Foundations,
Applications, and Markets. Springer Verlag, Berlin, 1998, pp. 29-47.

21. Sommerville, I., and Sawyer P., Requirements Engineering: a good practice guide.
John Wiley & Sons, Chicester, England, 1997.

22. Weidenhaupt, K., Pohl, M., Jarke, M. and Haumer, P., Scenarios in system
development: current practice, in IEEE Software, pp. 34-45, March/April, 1998.

23. Wooldridge, M., and Jennings, N.R., Agent Theories, Architectures, and Languages:
a survey. In: Wooldridge, M., and Jennings, N.R. (eds.) Intelligent Agents, Lecture
Notes in Artificial Intelligence, vol. 890, Springer Verlag, Berlin, 1995, pp. 1-39.

