Specification of Behavioural Requirements within
Compositional Multi-Agent System Design

Daniela E. Herlela Catholijn M. Jonket Jan Treu, Niek J.E. Wijngaardg

! University of Calgary, Software Engineering Research Network

2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
Email: danah@cpsc.ucalgary.ca
URL: http://Awww.cpsc.ucalgary/~danah

2 Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
Email: {jonker, treur, niek}@cs.vu.nl
URL: http:/mww.cs.vu.nl/{~jonker, ~treur, ~niek}

Abstract. In this paper it is showmow informal andformal specification

of behavioural requirementsand scenarios for agents and multi-agent
systems can be integrated within multi-agent system desigparticular, it

is addressedhow a compositional perspectiveboth on design descriptions

and specification of behavioural requirementscan be exploited. The
approach has beeappliedin a casestudy: the developmentof a mediating
information agent. It is shown that compositional verification benefits
from the integration of requirements engineering within the design process.

1 Introduction

Agent systemsare amongthe most complexof systemsto develop(cf. [20], [23]).
The autonomy in the behaviour of the agents contributes inherently to this
complexity. The tasks performed by the individual agents can be simple or complex in
itself, but the agents’ autonomy makes the emergent behaviour of the complgte
agent system both hard to design and hard to verify. Nevertheless,in many
applications it is required that the ageot®peratenith eachotherandthe usersin a
in some sense coordinated manner. Often it is essential to aredysementon the
behaviourof the overall multi-agentsystemin relationto behaviouralpropertiesof
the individual agents, in order to develop a system with the right properties.

Within multi-agent system development, thmphasiss often on specificationof
the system architecture thatdesignedandon the implementationof this design.If
requirementsare consideredthey are kept implicit or informal. In principle, the
required behavioural properties plapeuristicrole: the systemdesignis madeup in
sucha mannerthat the systembehaviourdoeswhat is neededalthoughit is not
explicitly specified what that means.

RequirementsEngineering (cf. [5], [18], [21]) addresseshe developmentand
validation of methodsfor eliciting, representinganalysing,and confirming system
requirementsRequirementexpressntendedpropertiesof the system, and scenarios
specify use-casesf the intendedsystem(i.e., examplesof intendeduser interaction
traces),usually employedto clarify requirementsRequirementsand scenarioxanbe
expressedin various degreesof formality, ranging from unstructured informal
representationgusually during initial requirementsacquisition) to more structured
semi-formal representations and formal representations.

Requirementgan be specifiedfor a multi-agentsystemas a whole, but also for
agents within a multi-agent system, and for componefitsin agents.Startingfrom
behaviouralrequirementsfor the system as a whole, by requirementrefinement
behavioural properties of agents can be identified, and, in a further step, for
components within an agent. Such an approach fits quite well in compositional multi-
agent system design, for exampds,discussedn [3], andactually makespart of the
heuristicsof the designprocessexplicit. One of the underlying assumptionds that
sucha compositionaldesignmethodwill leadto designsthat are more transparent,
better maintainable, and can be (partially) reused more easily within other designs. The
processof requirementgefinementdefinesthe different process abstraction levels in
more detail. On the basisof refinementof the requirementgand scenarios)for the
entire system, system components are identified: agents,amsbs®rld components.
For each of these componentsof the system, a specific sub-setof the refined
requirements andcenariods imposedto ensurethat the systemas a whole satisfies
the overall requirements and scenarios. Also further refinement edgh&#ementsand
scenariodmposedon an agentleadsto the identification of componentswithin the
agent, and their properties.The different refinement levels in requirementsand
scenariosare relatedto levels of processabstractionin the compositional design
description being designed.

Within a compositionalverification process,after a system has been designed,
formalised behavioural requirements plagnain role; cf. [17]. A verification process
for an existing design often has a higbmplexity in two respectsOn the one hand,
the formal formulationsof the propertiesat the different processabstractionlevels
have to be found. If no explicit requirements engineeringleasperformed this can
be very hard indeed, as the search space for requirement formulations is often not small
andverification is only usefulwith respectto the appropriaterequirementsand the
properties and assumptions on whibley dependOn the other hand,proofs haveto
be found. If, as part of the design process, requirentavisbeen(formally) specified
as well, these can be usedaastarting point for a verification processthus reducing
the complexity of verification, by eliminating the searchspacefor the requirement
formulations at different processabstractionlevels. If no requirementshave been
specifiedduring the designprocessduring verification a form of reverseengineering
has to be performedto obtain the (required) properties at the different process
abstraction levels afterwards.

The methodologicabpproachproposedesultsin the use of two (compositional)
specification languages:

« alanguage to specifgesign descriptions
« alanguage to specify (behaviounaduirements andscenarios

Within the compositional multi-agent system development metlesiRB(cf. [3]; for
a real-world casestudy see[2]), the first of theselanguagess alreadyavailable;the
secondis currently being added.Eachof theselanguagedulfills its own purpose A
language to specify a (multi-agestystemarchitectureneedsfeaturesdifferent from a
languageto expresspropertiesof such a system. Therefore,in principle the two
languages are different. Tlagstinction betweenthesespecificationlanguagedollows
the distinction madein the Al and Design community (cf. [13], [14]) betweenthe
structure of a designobjecton the one hand,andfunction or behaviour on the other
hand.For both languagesinformal, semi-formaland formal variants are needed;to
facilitate the step from informal to formal. Formal models specified in the two
languagesanbe relatedin a formal manner:it is formally definedwhen a design
description satisfies a requirement or scenario specificatiorthaérmal relationis
used to verify that the design description fulfills the requirements and scenarios.

In this paperit is shown how specification of behavioural requirementsand
scenarios from informal to formal can be integrated within multi-aggstemdesign,
in particular for a compositional design methaeith an underlyingformal conceptual
model for design descriptionseEBIRE The approach has been applieca casestudy:
the development of a mediating information agent.

The example domain for the case study is the developafienmulti-agentsystem
that keepsits humanusersinformed with respectto their interestsand the rapidly
changing available information on théorld Wide Web. The task of the multi-agent
systemis to inform eachof its userson information available(e.g., papers)on the
World Wide Web that is within their scope of interest. Boarcesof information are
the World Wide Web, but also information providing agents that operatteediVorld
Wide Web, for example, agentsrelatedto Web sites of researchgroups, which
announce new papers included in their web-site.

Different representationsf requirementsand scenariosfrom informal via semi-
formal to formal arediscussedn Section2. The use of requirementsand scenarios
refinementacrossprocessabstractionlevels is explainedfurther in Section3. The
integrationof the verification processand Requirementé&Engineeringis the topic of
Section 4. Section 5 concludes the paper with a discussion.

2 Informal and Formal Representation

In Requirement&ngineeringthe role of scenarios,jn addition to requirementshas
gained moremportance;e.g., see[11], [22]. Scenarioor use casesare examplesof

interactionsessionsdetweenthe usersanda system[22]; they are often used during
the requirementlicitation, being regardedas effective ways of communicatingwith

the stakeholders(i.e., domain experts, users, system customers, managers,and
developers).Scenarios,for example, are also employedto formalise interactions
amongcomponentwithin the system.Having both requirementsandscenariosn a

requirementengineeringorocessprovidesthe possibility of mutual comparisonthe
requirementgan be verified againstthe scenariosand the scenarioscan be verified
againstthe requirements.By this mutual verification process,ambiguities and
inconsistenciesvithin and betweenthe existing requirementsor scenariosmay be
identified, butalso the lack of requirement®or scenariosscenariosnay be identified
for which no requirements were formulated yet, and requirenneaysbe identified for
which no scenarios were formulated yet.

formal \ I formal \
v requirements scenarios
degree of = n ~N
N semi-formal semi-formal
formalisation . .

requirements scenarios
N N

informal informal

requirements) scenarios
relations between

requirements and scenarios

Fig. 1. Representations from informal to formal.

As stated above, requirementsand scenariosare seen as effective ways of
communicatingwith the stakeholdersThis can only be true if requirementsand
scenariosare representedh a well-structuredand easyto understandnannerand are
precise enough and detailed enough to support the development mtessystem.
Unfortunately,no standardanguageexistsfor the representatiomf requirementsand
scenariosFormatsof varying degreesof formality are usedin different approaches.
Informally representedequirementsand scenariosare often best understoodby the
stakeholdergalthoughapproachegxist using formal representationsf requirements
in early stagesaswell: [9]). Therefore,continual participationof stakeholdersn the
process is possiblé& drawbackis that the informal descriptionsare less appropriate
when they are used as input to actually constrsststemdesign.On the other hand,
an advantageof using formal descriptionsis that they can be manipulated
automatically in amathematicalvay, which enablesverification andthe detectionof
inconsistencieskurthermorethe processof formalising the representationgan be
used as a way to disambiguate requirements and scenaribg. gstmetime however,
a formal representationis less appropriateas a communicationmeanswith the
stakeholders. Therefore, aur approachin the overall developmenprocessdifferent
representationsare used: informal and/or structured semi-formal representations
(obtainedduring the processof formalisation)resulting from cooperationbetween
stakeholders and designers of the system, and formal represertatimssedby the
designers during the construction of the design.

Independent of the measure of formality, essdjuirementand eachscenariocan be
representedn a number of different ways, and/or using different representation
languages, e.g., informally by way of use cases in UML. Examples are given below.

2.1 Informal Representations

Different informal representationgan be usedto expressthe samerequirementor
scenario.Representationsan be made,for example,in a graphical representation
language, or a natural language, ocambinationsof theselanguagesasis donein
UML'’s usecaseg(cf. [12], [15]). Scenariosfor instance,canbe representedising a
format that supports branching points in the process, alanguagethat only takes
linear structures into account.

For the exampleapplication, first a list of nine, rather imprecisely formulated
initial requirements was elicited. Amn example the elicited requiremenbn ‘keeping
aware’ is shown below.

Example of an informal initial top level requirement:

LO.R1 The user needs to be kept ‘aware’ of relevant new information on the World Wide Web.

Requiremento.Rr1 is basedon the information elicited from the interview with the
stakeholder. The following scenario was elicited from the stakeholder as well:

L0.Sc1
1. user generates an awareness scope : AS1
2. user Is waiting
3. new information is made available on the World Wide Web
4. user receives results for awareness scope AS1: ASR1

The requiremento.R1 was analyse@nd reformulatedinto a more preciserequirement.
In the (reformulated) scenarios and requirements, terminology is identéledantfor

the constructionof domain ontologies (words in bold-faceare part of the domain
ontologies being acquired).

Example of a reformulation of a requirement at top level:

LO.R1.1 The user will be notified of new information (on the World Wide Web) on an awareness
scope
after the user has expressed the awareness scope and
just after this new information becomes available on the World Wide Web,
unless the user has retracted the awareness scope (awareness scope retraction).

2.2 Structured Semi-formal Representations

Both requirementsaind scenarioxan be reformulatedto more structuredand precise
forms. To checkrequirementdor ambiguitiesand inconsistenciesan analysisthat
seeks to identify the parts of a given requirement formulation that refer toangtd
output of a process is useful. Suahanalysisoften provokesa reformulationof the
requirement into a more structured forim,which the input and output referencesre
made explicitly visible in thestructureof the formulation. Moreover,during suchan
analysisprocesghe conceptghat relateto input canbe identified and distinguished
from the concepts that relate to outdquisition of a (domain) ontology (cf. [19]) is

integratedwithin requirementsengineering.Possibly the requirementsplits in a
natural manner into twor more simpler requirementsThis often leadsto a number
of new (representations of) requirements.

The ontology later facilitates the formalisation of requirements and scenartbs, as
input and output conceptsare alreadydefined, at least at a semi-formallevel. For
nontrivial behaviouralrequirementsa temporal structurehas to be reflectedin the
representationThis entailsthat termssuchas ‘at any point in time’, ‘at an earlier
point in time’, ‘after’, ‘before’, ‘since’, ‘until’, and ‘next’ are usedto clarify the
temporal relationships between different fragments in the requirement.

For the informally specified requirementLo.R1.1, for example, the following
reformulation steps can be made:

At any point in time

The user will receive on its input results for awareness scope, i.e., new information on
an awareness scope

after the user has generated on its output the awareness scope and

just after this new information becomes available as output of the World Wide Web ,
unless by this time the user has generated on its output an awareness scope retraction.

At any point in time,

if at an earlier pointin time the user has generated on its output an awareness scope, and
since then the user has not generated on its output an awareness scope retraction referring
to this awareness scope, and

just before new information within this awareness scope becomes available as output of
the World Wide Web ,

then the user will receive on its input this new information within the awareness scope .

Basedon thesereformulationstepsthe following semi-formalstructuredrequirement
can be specified:
LO.R1.2 Atany pointin time,

if

at an earlier point in time

user output : an awareness scope, and
since then
not user output : retraction of this awareness scope, and
just before
World Wide Web output: new information within this awareness scope
then
user input: new information within this awareness scope

In summary,to obtain a structuredsemi-formalrepresentatiomf a requirement, the
following is to be performed:

« explicitly distinguishinput and output concepts in the requirement formulation,

« define (domainpntologies for the input and output information,

« makethe temporal structure of the statementexplicit using words like, ‘at any
point in time’, ‘at an earlierpoint in time’, ‘after’, ‘before’, ‘since’, ‘until’, and
‘next’.

For scenarios, a structured semi-formal representation is obtained by:

« explicitly distinguishinput and output concepts in the scenario description,
« define (domainpntologies for the input and output information,
¢ represent the temporal structure described implicitly in the sequence of events.

The interplay between requirements elicitation and analysis and scenario elicitation
analysis plays an important role. To be more specific, it is identified which
requirements and scenarios relate to each othegximple,Lo.R1.2 relatesto L0.Sc1.2.

If it is identified that for a requiremento related scenariois availableyet (isolated
requirement), then a new scenario can be acquired.

L0.Sc1.2
1. user output: awareness scope
2. user is waiting
3. World Wide Web output: new information
4. userinput: results for awareness scope

2.3 Formal Representations

A formalisationof a scenariocanbe madeby using formal ontologiesfor the input
andoutput, and by formalising the sequenceof eventsas a temporaltrace. Thus a
formal temporal model isbtained,for exampleas definedin [4] and[17]. Of course
other formal languages can be chosen as agdibng asthey allow the formalisation
of temporal dependencieshat can occur within behaviouralrequirementswithout
having to make further design choices first.

To obtainformal representationsf requirementsthe input and output ontologies
haveto be chosenas formal ontologies.The domainontologies acquiredduring the
reformulation process for the example application were formalgatipf the domain
ontologies related to the focus on requirements and scenarios is shown below:

ontology element: explanation:

SCOPE a sort for the search scopes and awareness scopes

USER a sort for the names of different users

PERSISTENCE_TYPE a sort to distinguish between persistent and incidental
scopes

INFO_ELEMENT a sort for the result information

result_for_scope a binary relation ofNFO_ELEMENT andSCOPE

persistent, incidental objects of sorPERSISTENCE_TYPE corresponding to the

difference in persistence between an awareness scope and a
search scope

input:

is_interested_in a ternary relation obSER, SCOPE and
PERSISTENCE_TYPE

output:

result_for_user a ternary relation oNFO_ELEMENT, USER andSCOPE

In addition,the temporalstructure,if presentn a semi-formalrepresentationhasto
be expressed in a formal manner. Usingftirenal ontologies,anda formalisationof
the temporalstructure,a mathematicallanguageis obtainedto formulate formal
requirementrepresentationslhe semanticsare basedon compositionalinformation
stateswhich evolve over time. An information state m of a componento is an

assignment of truth valuesu, faise, unknown} to the setof groundatomsthat play a
role within . The compositionalstructureof o is reflectedin the structureof the
information state.A formal definition canbe found in [4] and[17]. The set of all
possible information states ofis denoted bys). A trace O of a component b
is a sequence of information state', [N in 1so). Given a tracedM_of component
D, the informationstateof the input interfaceof componentc at time point + of the
componenb is denoted bytaten(M, t, input(c)), Wherec is eithem or a sub-component
of b. Analogously,statep(OM , t, output(C)), denoteghe information stateof the output
interfaceof componentc at time point t+ of the componentp. These formalised
information statescan be relatedto statementsvia the formally defined satisfaction
relation |=. Behavioural propertiescan be formulated in a formal manner, using

quantifiersover time and the usual logical connectivessuch as not, & [1 . An

alternativeformal representatiorof temporal properties(using modal and temporal
operators) within Temporal Multi-Epistemic Logic can be found in [10].

Examples of formal representations of top level requirements:

Lo.R1.2 is formalisedby L0.R1.3: Thefirst part of this requirementaddresseshe case
that information relating to an awareness sdspareadypresentwhereashe second
part addresses the case that the information becomes available later.

LO.R1.3:
O, t
[stateg(ON, t, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent) &
stateg(O, t, output(WWW)) |= result_for_scope(l:INFO_ELEMENT, S:SCOPE)]
O o>t
stateg(M, t', input(U)) |= result_for_user(l:INFO_ELEMENT, U:USER, S:SCOPE)
&
OOM, 11, t2>t1
stateg(OM, t1, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent) &
stateg(O, t2, output(WWW)) |= result_for_scope(:INFO_ELEMENT, S:SCOPE) &

Or [tl<t<t2 O
[not stateg(OM, t', output(WWW)) |= result_for_scope(:INFO_ELEMENT, S:SCOPE) &

not stateg(OM, t', output(U)) |= not is_interested_in(U:USER, S:SCOPE, persistent)]
0 O3>t2
stateg(OM, t3, input(U)) |= result_for_user(l:INFO_ELEMENT, U:USER, S:SCOPE)

Example of a formal representation of a top level scenario

The following formal scenario representati@tatesto the secondformal requirement
representatiorexpressedabove. Note that point at time point 2 nothing happens,
which corresponddo the waiting of the user, of coursein another (but similar)
scenario the waiting could take more time.

L0.Scl.3:
stateg(OM, 1, output(U)) |= is_interested_in(U:USER, S:SCOPE, persistent)
stateg(OM., 3, output(WWW)) |= result_for_scope(l:INFO_ELEMENT, S:SCOPE)

stateg(OX, 4, input(U)) |= result_for_user(l:INFO_ELEMENT, U:USER, S:SCOPE)

To summarise, formalisation of a requiremenscgnarioon the basisof a structured
semi-formal representation is achieved by:

< choosingformal ontologies for the input and output information
« formalisation of theemporal structure in a formal mathematical language

Checking a temporal formula F, which formally representsgairementagainsta
temporal modedM_, formally representinga scenariomeansthat formal verification
of requirementsagainst scenarioscan be done by model checking. A formal
representatiogM_of a scenarioS anda formal representatio of a requirementare
compatibleif the temporalformulais true in the model. For example,the temporal
formulaLo.R1.3 is indeed true in scenarnio.sc1.3: the result waswvailablein the world
at time point 4 in the scenario(after the usergeneratedhe persistenintereston its
output at time point 1), at time point 5 (which is later than 4) the user hasthe
information on its input.

3 Requirements at Different Process Abstraction Levels

In this section three levels of abstraction are discussed: requireimietiie systemas
a whole, requirementsfor an agent within the system, and requirements for

componentswithin an agent. Examplerequirementsat different levels of process
abstraction for the example domain are used as illustration.

3.1 Requirements for the Multi-agent System as a Whole

First, the requirementdor the multi-agentsystemas a whole, including interaction
with users are considered. The requiremantsscenariosn the previoussectionsare
formulated with respect to the users ahd World Wide Web, which is considerechs
the given environment.Otherwiseno assumptionsvere madeon the designof the
multi-agent system that is to support the users.gxample,no specificagentswere
assumed as yet. The requiremeand scenariosas presentedn Section2 expresshe
desired behaviour from a global perspective, and only refer to input and output of users
and the environment(the World Wide Web). By refining these requirementsand
scenarios,more elementary units of behaviour can be identified (behavioural
refinement); which units of behaviourare chosenis a specific designdecision. For
example, it can be postulated that on the basipecific useroutputs concerningits
interest, an unpersonalized scope of interest is identified:

LO.R2 For each search scope of a user, an unpersonal incidental need for information on the
scope of the search scope is generated.

LO.R3
a. For each awareness scope of a user, an unpersonal persistent need for information on
the scope of the awareness scope is generated.
For each awareness scope retraction of a user, an unpersonal persistent need for
information retraction on the scope of the awareness scope is generated.

Available new information is to be presentedto those users interestedin that
information:

LO.R4 If new information is available , then each user with an awareness scope that has not been
retracted by that user and that matches that information will receive that information.

LO.R5 If there is a persistent need for information that has not been retracted and information
becomes newly available on the World Wide Web that matches this persistent need, then
this information is identified as new information.

Note that new ontology elements are created that need not b fiaetontologiesof
a userinput or output andare not meantto be part of theseontologies.In relation
with the refinementso.R2 to L0.R5 the design decision is matke identify at leasttwo
typesof agents:PersonalAssistantagents that arein direct contactwith users,and
Information Provideragents that only handle unpersonalizetheedsfor information.
Requirements0.R2 andL0.R3 are imposedon the PersonalAssistants,requirements
L0.R4 andL0.R5 are imposed on the co-ordinated behaviour of both tgpagents.The
interfacesof the PersonalAssistantsand Information Providerswill occurin semi-
formal reformulations of the above requirements.

A global designof the multi-agentsystemis describedin Fig. 2, in which two
users,one PersonalAssistant,two Information Providers,andthe World Wide Web
are depicted. The Persorrdsistanthasto co-operatevith humanagents(its users),
and the Information Providexgents.The task of the PersonalAssistantis to inform
each of its users on informati@vailable(e.g., papers)on the World Wide Web that
is within their scope ointerest.Information on availablepapersis communicatedo
the PersonalAssistantby Information Providers. The PersonalAssistantis also
capabile itself of searching for information on the World Wide Web.

information}
JEEN: =
personal
% assistant D ’D www D
e A
e)0 e

Fig. 2. Global multi-agent system description.

Given the design choice additional leverequirements cabe formulatedin terms of
input and output of the agents and processes as identified:

LO.R6.2a /* Refinement of LO.R1.2 */
At any point in time
The user shall receive on its input results for awareness scope
after the user has generated on its output that awareness scope and
just after new information relevant for that awareness scope becomes available on the
input of the Personal Assistant
and the Personal Assistant did not receive on its input an awareness scope retraction
before the new information was received on the Personal Assistants input.

LO.R6.2b /* Refinement of LO.R1.2 */
At any point in time
The Personal Assistant will generate on its output results for awareness scope for a user
after it has received on its input an awareness scope of that user and
just after new information relevant for that awareness scope becomes available on the
output of the World Wide Web or on the output of one of the Information Providers
and the Personal Assistant did not receive on its input an awareness scope retraction
before the new information was received on the Personal Assistants input.

LO.R2.2 Atany pointin time
If a user has generated on its output a search scope , then the Personal Assistant will
generate on its output an unpersonal incidental need for information on the scope of the
search scope.

L0.R3.2 Atany pointin time

a. Ifauser has generated on its output an awareness scope,
then the Personal Assistant will generate on its output an unpersonal persistent need for
information on the scope of the awareness scope is generated.

b. If auser has generated on its output an awareness scope retraction,
and no other users have generated the same awareness scope without having it retracted,
then the Personal Assistant will generate on its output an unpersonal persistent need for
information retraction on the scope of the awareness scope is generated.

LO.R4.2 Atany pointin time

a. If the Personal Assistant receives new information on its input ,
then each user with an unretracted awareness scope matching that information will receive
that information on its input.

b. If an Information Provider receives on its input information that it identifies as new
information,
and the new information matches an unretracted persistent need for information that
the Information Provider received on its input from the Personal Assistant,
then the Personal Assistant will receive this new information on its input.

LO.R5.2 Atany pointin time
If an Information Provider receives on its input a persistent need for information and
later information becomes newly available on the World Wide Web that matches this
persistent need, and this persistent need was not retracted before the new information
became available,
then this information is identified as new information and generated on the output of the
Information Provider.

In summary, for the current problem a design choice was made to design the system as
a multi-agentsysteminsteadof as a single componentsystem. The agentsof the
multi-agentsystem,the users,andthe World Wide Web are all componentsof the

system at the samelevel of processabstraction.For the top level, Lo, the
requirements pose constraints on more than one component of the multi-agent system.
In other words theo requirementsither specify the global purposebehaviourof the
system(like Lo.R1) or they specify the behaviourof the whole systemin terms of
relationsbetweenthe behaviourof severalof its componentsLo.R2 to L0.R6). The

latter are also requirementn the compositionrelation of the multi-agentsystem.

Before the individual components can be designed,ratpgrementareto formulated

on the behaviour of those individual agents and the component WWW.

process

abstraction requirements scenarios
level 0
process process
refinement refinement
relations relations
process
abstraction

level n

- N
refined
i scenarios
relations between

requirements and scenarios

refined
requirements

Fig. 3. Process abstraction level refinements.

3.2 Requirements for an Agent within the System

Requirementsformulated on the behaviour of those individual agentsand the
component WWW are requirements of thext processabstractionievel (seeFig. 3),

in this caselevel L1. Again theserequirementgan be formulatedinformally, semi-
formally, or formally. For example, the following requirements can be imposed on the
Personal Assistant agent (abbreviatedsgs

L1.P1 For each incoming search scope of a user, the PA shall initiate an incidental quest for useful
information on that scope by generating on its output:
a. communication to Information Providers regarding an incidental need for information
on the scope of the search scope.
observation to be performed on the World Wide Web regarding the scope of the search
scope.

L1.P2 For each incoming awareness scope of a user, the PA shall initiate an persistent quest for
useful information on that scope by :
a. only once generating on its output communication to Information Providers regarding a
persistent need for information on the scope of the awareness scope.
repeatedly generating on its output an observation to be performed on the World Wide
Web regarding the scope of the awareness scope,
until the PA receives on its input a corresponding awareness scope retraction.

L1.P3 At any point in time
If the PA receives new informationon its input ,
then for each user with an awareness scope matching that information the PA will generate
on its output an awareness scope result for that user,
unless the PA received a corresponding awareness scope retraction before it received the
new information.

Similarly, requirementgor assumedequirements)an be formulatedfor the other
components of the multi-agent system. Again it is possible to define ef@rentary
units of behaviour by refining some of the requirements. Whdthesrdesirableto do
so dependsn whetheror not the constructedequirementsre consideredsufficiently
elementaryto serve as a starting point for a transparentdesign of each of the
componentsFor someof the componentghe requiredbehaviourmight still be too

complexfor this aim. In that case,the requirementsof those componentscan be
refined in terms of their behaviour. For example, a possiblaviouralrefinementof
L1.P3 includes the following three requirements:

L1.P4 The PA maintains a profile of its users that satisfies the following:
a. contains the unretracted awareness scopes of that user.
b. An awareness scope is added to the profile if it is received on PA’s input.
c. An awareness scope is removed from the profile if a corresponding awareness scope
retraction is received on PA’s input.

L1.P5 The PA is capable of matching new informationreceived on its input with awareness
scopes and determine the appropriateness of the information for the users that issued the
awareness scopes.

L1.P6 The PA is capable of interpreting incoming communication information and generating
communication information to other agents.

In relation to the behavioural refinements of requirements, a process refinemést
createdf this is deemedappropriate Furthermorejf a processrefinementis deemed
appropriate,then the choice still has to be made whether the current process
abstraction level is extended with more processegfor example,whetherthe Personal
Assistantagentis replacedby a numberof agentsat the sameprocessabstraction
level), or that amdditional process abstraction level is created within one of the agents
or processegfor example,composingthe PersonalAssistantof a numberof sub-
components). In this case, the latter alternative is chosen. For this chmiogbarof
additional level L1 requirementshaveto be formulatedto specify the behavioural
properties of those sub-processegheir relationto eachother (the behaviourof the
sub-processem relation to eachotheris global with respectto level L1), and a
number of.2 requirements have to be formulatedsteecify the behaviouralproperties
of the individual sub-processes (this behaviour is local with respect ta f#¢vBefore
considering theequirementf level L2, first the sub-componentmust be identified
and their global leval1 behaviour analyzed.

Based on the requirementspP4 to L1.P6 a design decision is made to identifyledst
threesub-componentfor the PersonalAssistant:a componento maintain the user
profiles (called Maintenance of Agent Information;@mponentapableof matching
information with awareness scopes (callmdposalDetermination),anda component
that handles communication with other agents (called AggetactionManagement).
RequirementL1pP4 is imposedon componentMaintenanceof Agent Information
(abbreviatedoy MAl), requirement.1.ps on componentProposalDetermination(PD),
and L1.p6 is imposedon componentAgent Interaction Managemeniaim). For the
otherrequirement®of the PersonalAssistantsimilar behaviouralrefinementscan be
made,this resultsin the additionof a few other sub-componentsThe next level of
processabstractionof the designof the PersonalAssistantis describedin Fig. 4.
Apart from the already mentioned componettig, PersonalAssistantalso consistof
a componentcalled World Interaction Managemen{abbreviatedby wim, used for
observing the World Wide Web and interpreting the observatisults),a component
called Maintenanceof World Information (abbreviatedby mwi, usedto maintain
information on theWorld Wide Web), anda componentcalled Own ProcessControl
(abbreviated byrc, used to determine the strategies, goals, and plans of the agent).

(Agent task control)

world info to opc
—— agent info to opc

Own -
Process
=E H own
Control
1= process
T |lprocess [infoto
own process info to wim infoto |mai
W process o to am mwi info to be communicated

—_——
commu .
Agent - agent Maintenance
communicatdd Interaction | | info[of Agent
info —] Management || = Information I

agent info to aim communicated world info

world info to aim

observations and actions =

—_—
Maintenance

of World —
Information

——

bserved|
agent
info

=)

observatipn
results World

to wim Interaction
I Management

observed

world info to wim world info

oW
i N
observed | lcommunicated

,
info to pd | |info to pd Pmpl.)sal.
Determination

action and observation info from pd \ V,

communication info from pd

Fig. 4. Internal description of the Personal Assistant.

Given the above design choices, additional leveéquirements can be formulated:

L1.P7
a
b.
C

L1.P8

Incoming communication information received on the input of the PA is interpreted by AIM
into new information, awareness scopes, awareness scope retractions, and search
scopes.

AlIM provides MAI with awareness scopes and awareness scope retractions.

AIM provides PD with new information and search scopes.

AIM provides MWI with new information.

PD provides AIM with awareness scope results and search scope results that are to be
communicated to a user.

L1.P9 MAI provides PD with the current awareness scopes and search scopes.

3.3 Requirements for a Component within an Agent

The individual behaviouralpropertiesof the componentsdistinguishedat process
abstractionlevel L1 are specified by requirementsat abstractionlevel L2. A few
examples of leval2 requirements are:

L2.PD1

L2.AIM1

PD matches the current awareness scopes with new information it receives; if a match is
found, then PD generates a corresponding awareness scope result.

If AIM receives an awareness scope result, then AIM generates an outgoing
communication containing that result for the relevant user.

4 Requirements Specification and Verification

In this sectionsomeof the methodologicabspectsare summarizedand discussedin
particular, the relation between requirements specification and compositional
verification is addressed.

4.1 Methodological Aspects

Within the proposed methodology, during a degigocessjn relationto behavioural
refinementsof requirements,a processrefinementis createdif this is deemed
appropriate. Arefinementof a behaviouralrequirementdefinesrequirementsn more
elementaryunits of behaviour.Startingwith behaviouralrequirementsof the entire
system, orthe basisof requirementefinementit canbe decidedaboutthe agentsto

usein the system,andin particular,which agentis meantto show which type of

behaviour.In a next step, for eachof the agentsit can be decidedwhetherit is

desirable to refine the requirements for #uyentfurther, dependingon whetheror not

the requirements constructed for the agent are elementary encaeaghdas a starting
point for a transparent desigr the agentitself. For someof the agentsthe required
individual behaviour may still be too compléx leadto a transparentlesign.In that
case, the behavioural requirements of those agents aafiresl. This canleadto the

identification of requirements on more elementary unitsetfaviourwithin the agent
and, in relationto this, to different componentswithin the agentto perform this

behaviour.

highest process abstraction level:
required behavioural properties of entire system

I\

next process abstraction level:
behavioural properties of agents

FIN TN]

next process abstraction level:
behavioural properties of components within agents

A A R A A A R A R
(and so on)

Fig. 5. Behavioural properties at different process abstraction levels

This requirementsrefinement processcan be iterated for some of the agent
componentswhich, dependingon the complexity of the agent, may lead to an
arbitrary number of process abstraction levels within the agent (see Figpegesult
of this process is the identication of different process abstraction levelstHedavel
of the entire system, to the level of each of digentsseparatelyand further down to
more specific processes within agents.

Sets of requirements at a lower level can be chosen in such a way that theyarealise
higher level requirement, in the following sense:

e given theprocess composition relation defined in the design description,
¢ if the chosemefinements of a given requiremerstre satisfied,
¢ then also the originalequirement is satisfied.

This defines the logical aspect of a behavioural refinement relation between
requirements. Based on this logical relation, refinemelationshipscanalso be used
to verify requirements: e.qg., if the chosesfinementsof a given requirementall hold
for a given systemdescriptionthen this requiremenicanbe provento hold for that
systemdescription.Similarly, scenariosanbe refined to lower processabstraction
levels by adding the interactions betweenthe sub-processesAt each level of
abstraction, requirementsand scenariosemploy the terminology defined in the
ontology for that level.

4.2 Relation to Compositional Verification

The methodological approach tioe creationof different processabstractionevelsin
relation to requirementsrefinementhas a natural connectionto the process of
compositionalverification (cf. [17]). The purposeof verification is to prove that,
under a certain set of assumptions, a systemadiiereto a certainset of properties,
expressed as requirements and scenarios. In order to prove that a systeavisgas
required, not only a complete specification of the system is necessagysthe set
of requirements and scenarios to verify the system againbisi§etis not available,
the verification process is hampered to a great extecgusdormulating sufficiently
preciserequirementgand scenarios)or an existing systemis nontrivial. For the
purpose of verification it has turned out useful to exploit compositionality (cf. [17]).

Compositional verification as described[itv] takesthe processabstractiorlevels
usedwithin the systemand the related compositionalstructureof the systeminto
account. The requirements and scenario$arsulatedformally in termsof temporal
semantics.During the verification processthe requirementsand scenariosof the
systemas a whole canbe derivedfrom propertiesof agents(one processabstraction
level lower) and these agemtopertiesjn turn, canbe derivedfrom propertiesof the
agent components (again one abstraction level lower), and so on (see Fig. 5).

Primitive components (thossomponentghat are not composedf others)canbe
verified using more traditional verification methods. Verification of a (composed)
component at a given process abstraction level is done using:

« properties of the sub-components it embeds

¢ a specification of thprocess composition relation

e environmental properties of the componentdependingon the restof the system,
including the world).

This exploits the compositionality in the verification process:given a set of
environmentalproperties,the proof that a certain componentadheresto a set of
behavioural properties depends on the (assumed) propertiesubitsomponentsand
the composition relation: properties of the interactions between those sub-
componentsandthe mannerin which they are controlled. The assumptionsunder
which the component functionmoperly, arethe propertiesto be provenfor its sub-
components. This implies that properties at different levels of process abstpayion
their own role in the verification process.A condition to apply a compositional
verification method ighe availability of an explicit specificationof how the system
descriptionat an abstractionlevel is composedrom the descriptionsat the adjacent
lower abstraction level.

Compositionalityin verification reduceshe searchspacefor the propertiesto be
identified, and theoroofs, and supportsreuseof agentsandcomponentsComplexity
in a compositionalverification processis two-fold: both the identification of the
appropriatepropertiesat different levels of abstractionand finding proofs for these
propertiescan be complex. If the propertiesalready are identified as part of the
requirementsengineeringprocess,this meansthat the complexity of part of the
verification processs reduced:only’ the complexity of finding the proofs remains.
Our experience in a number of cagadiesis that having the right propertiesreduces
much more than half of the work for verification: due to tbenpositionality,at each
process abstraction level the search space for the proofs is relatively small.

If no explicit requirements engineering has been performed, finding these properties
for the different process abstraction levels can be veryihdegd,as evenfor a given
processabstractionlevel the search space for possible behavioural requirement
formulations can be nontrivial. If as part of the design procepsrementhave been
(formally) specified as well at different levels of process abstradti@secan be used
as a useful starting point for a verification process; they provide a dataletbr the
verification process and thus reduce the complexity by eliminating the searcHmspace
the requirement formulations at different process abstraction levels.

Integration of the requirementsengineeringprocesswithin the system design
process leads to system designs that are more appropriate for verificatianbitrary
architectures. Moreover, reuse is supported; for examgdacingone componenty
another ispossiblewithout violating the overall requirementsand scenariosas long
asthe new componentatisfiesthe samerequirementsand scenariosas the replaced
component. In [16] a requirements engineering process modieddsbedhat canbe
used to support the requirements engineering process. Nothaldda of refinement
is well-known in the area of (sequential)programs,e.g., [6]. The method of
compositional requirementpecificationproposechereexploits a similar ideain the
context of behavioural requirements.

5 Discussion

Requirements and scenarios desctiteerequiredpropertiesof a system(this includes
the functionsof the system,structureof the system, static properties,and dynamic
properties). In applications of agent systems, the dynamics or behavioursystbm
plays an importantrole in descriptionof the successfuloperation of the system.
Requirementand scenariosspecificationhasboth to be informal or semi-formal(to

be ableto discussthemwith stakeholdersandformal (to disambiguateand analyse
them and establishwhetheror not a constructedmodel for a multi-agent system
satisfies them).

As requirementsand scenariosform the basis for communication among
stakeholders (including the system developers), it is important to mairdacuenent
in which the requirementsand scenarios are organised and structured in a
comprehensive way. Thdocumentis alsoimportantfor maintenancef the system
once it has been taken into operation. The different activities in requirements
engineeringlead to an often large number of inter-related representationsof
requirements and scenarios. The explicit representation ofttaesahility relations is
useful in keepingtrack of the connections;traceability relationshipscan be made
explicit (see Figs. 1 and 3): reformulation relations among requirements (resp.,
scenarios) at the same processabstractionlevel, behavioural refinement relations
betweenrequirements (resp., scenarios) at different processabstractionlevels, and
satisfaction relations betweenrequirementsand scenariosFor the case-studythese
relationshipshave been specified using hyperlinks. This offers traceability; i.e.,
relating relevantrequirementsand scenariosas well as the possibility to ‘jump’ to
definitions of relevant requirements and scenarios.

In summary, the main lessons learned from our case studies are:

¢ Integrationof requirementsand scenariosacquisition with ontology acquisition
supportsthe conceptuaklnd detaileddesignof the input and output interfacesof
agents and agent components

« Refinement of requirements and scenarios in terms of requiremendseratioon
more elementarybehavioursat the top level supportsthe identification of agents
and theallocation of behavioursto agents

« Refinement of requirements and scenarios in terms of requiremendseratioon
more elementarybehaviourswithin an agentsupportsthe identification of agent
components and tha¢location of functionality to agent components

* A compositionalapproachto requirementsand scenariosspecificationprovidesa
basis for thedesign rationale: a documentatiorof the designchoicesmadeandthe
reasons for them

* A compositional approach to requirements and scenarios specificatorirdgegral
partof the multi-agent system design processstrongly facilitates compositional
verification of the designed system.

e The process of achieving an understanding of a requirement involves adanger
of different formulations and representations, graduallyevolving from informal to
semi-formal and formal.

e Scenarios and their formalisation are, comparedto requirements,of equal
importance.

¢ Keeping track on the various relations between different representationsof
requirements, between requirements and scenarios, and many others, is siyyported
hyperlink specifications within a requirements document.

As a result of these explorative studiess proposedhat a principled designmethod
for multi-agent systems should include two specification languages:

e alanguage to specifgesign descriptions
¢ alanguage to specify (behaviounaduirements andscenarios

Each of these languages has its own chacteristics to fulfill its purposéiskinetion
is similar to the onemadein the Al andDesigncommunity[13], [14] betweenthe
structure of a designobjecton the one hand,andfunction or behaviour on the other
hand. For both languagesinformal, semi-formal and formal variants have to be
availableto supportthe stepfrom informal to formal, and, for exampleto support
communication with stakeholders.

A formal specificationlanguageof the first type, anda semi-formalandgraphical
variant of this language, is already availainiehe compositionalmulti-agentsystem
developmentmethodDESIRE, andis supportedby the DESIRE software environment.
This languagewas nevermeantto specify requirementsor scenarios;a languageto
specify a (multi-agent) systearchitectureat a conceptuadesignlevel needsfeatures
different from a language to express properties of a systecorientresearchfurther
integrationof the approachto requirementengineeringas proposedn this paperin
the compositional developmentmethod for multi-agent systems, DESIRE and, in
particular, in its software environment is addressed.

The requirementsaind scenariogor agentsystemsoften haveto addresscomplex
behavioural properties. In comparison, it is not clear how, for example, in idte
complex behavioural requirements can be specified; use cases are informal, and activity
diagramsseemtoo design specific and cannotexpressthe necessarynore complex
temporal dependencies relevant to both requirements and scenati@sdévelopment
of UML different representations of behavioural requirements and scenariostas
issue [12], [15]. In [7], [8] an approachis presentedin which more complex
behavioural properties can be specified. A difference to our work is that no
compositionality isexploitedin requirementspecificationandverification. In recent
researchin knowledgeengineering,identification and formalisation of propertiesof
knowledge-intensiveystemsis addressedysually in the context of verification or
competence assessment of compsks;e.g., [1]. Such propertiescanbe usedas a
basis for requirementspecifications,and may play a role within specific agent
compomenents.

References

1. Benjamins, R., Fensel, D., and Straatman,R., Assumptions of problem-solving
methods and their role in knowledge engineering.Mth:Wabhlster (Ed.), Proceedings
of the Twelfth EuropeaConferenceon Artificial Intelligence, ECAI'96, John Wiley
and Sons, 1996, pp. 408-412.

2. Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and Treur, J. Formal
specification of Multi-Agent Systems: a real World Case. In: Lesser, V. (ed.),
Proceedings of the First International Conference on Multi-Agent Systems,
ICMAS'95, MIT Press,Menlo Park, VS, 1995, pp. 25-32. Extendedversion in:
International Journal of Cooperative Information Systems,M. Huhns, M. Singh,
(eds.), special issue on Formal Methods in Cooperdtif@mation Systems:Multi-
Agent Systems, vol. 6, 1997, pp. 67-94.

3. Brazier,F.M.T., Jonker, C.M., and Treur, J., Principles of Compositional Multi-
agent SystemDevelopment.In: J. Cuena(ed.), Proceedingof the 15th IFIP World
Computer Congress, WCC'98, Conference on Information Technology and
Knowledge Systems, IT&RKNOWS'98, 1998, pp. 347-360.

4. Brazier, F.M.T., Treur, JWijngaards,N.J.E. and Willems, M., Temporalsemantics
of compositional task modelsand problem solving methods. Data and Knowledge
Engineering, vol. 29(1), 1999, pp. 17-42.

5. Davis, A. M., SoftwarerequirementsObjects, Functions, and States,Prentice Hall,
New Jersey, 1993.

6. Dijkstra, E.W., A discipline of programming. Prentice Hall, 1976.

7. Dubois, E. (1998). ALBERT: a Formal Languageand its supporting Tools for
Requirements Engineering.

8. Dubois, E., Du Bois, P., and Zeippen, J.M., A Formal RequirementsEngineering
Method for Real-Time, Concvurrent, amistributed Systems.In: Proceedingsf the
Real-Time Systems Conference, RTS'95, 1995.

9. Dubois, E., Yu, E., Petit, M., From Early to Late Formal Requirements.In:
Proceedings IWSSD'98. IEEE Computer Society Press, 1998.

10. Engelfriet, J., Jonker, C.M. and Treur, J., Compositional VerificatioMolki-Agent
Systems in Temporal Multi-Epistemic Logic. In: JJRueller, M.P. Singh, A.S. Rao
(eds.), Pre-proc. of the Fifth International Workshop on Agent Theories,
Architectures and Languages, ATAL'98, 1998, pp. 91-106. To appear in: J.P. Mueller,
M.P. Singh, A.S. Rao (eds.), Intelligent Agents V. Lecture Notesin Al, Springer
Verlag. In press, 1999

11. Erdmann,M. and Studer,R., Use-Casesand Scenariosfor Developing Knowledge-
based Systems. In: Proceedings of the 15th IFIP World Computer Cong/€€398,
Conferenceon Information Technologiesand Knowledge Systems, IT’RKNOWS (J.
Cuena, ed.), 1998, pp. 259-272.

12. Eriksson, H. E., andPenker,M., UML Toolkit. Wiley ComputerPublishing, John
Wiley and Sons, Inc., New York, 1998.

13. Gero,J.S., and SudweeksF., (eds.), Artificial Intelligence in Design '96, Kluwer
Academic Publishers, Dordrecht, 1996.

14. Gero,J.S., and SudweeksF., (eds.), Artificial Intelligence in Design '98, Kluwer
Academic Publishers, Dordrecht, 1998.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Harmon, P., and Watson, M., UnderstandingUML, the Developer’'s Guide. Morgan
Kaufmann Publishers, San Francisco, 1998.

Herlea,D.E., Jonker, C.M., Treur,J., and Wijngaards,N.J.E. A Formal Knowledge
Level ProcessModel of RequirementsEngineering. In: Proceedingsof the 12th
International Conference on Industrial and Engineering Applications of AlExmert
Systems, IEA/AIE'99. Lecture Notes in Al, Springer Verlag, 1999, To appear.

Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent Systems:a
Formal Analysis of Pro-activenessand Reactiveness.In: W.P. de Roever, H.
Langmaack, A. Pnueli (eds.), Proceedingsof the International Workshop on
Compositionality, COMPOS'97.Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998, pp. 350-380

Kontonya, G., and Sommerville, I., RequirementsEngineering: Processesand
Techniques. John Wiley and Sons, New York, 1998.

Musen, M., Ontology OrientedDesign and Programming:a New Kind of OO. In: J.
Cuena(ed.), Proceedingsof the 15th IFIP World Computer Congress, WCC'98,
Conferenceon Information Technology and Knowledge Systems, IT&KNOWS'98,
1998, pp. 17-20.

Nwana, H.S., andNdumu,D.T., A Brief Introductionto SoftwareAgent Technology.
In Jennings, N.R., and Wooldridge, M. (eds.), Agent Technology: Foundations,
Applications, and Markets. Springer Verlag, Berlin, 1998, pp. 29-47.
Sommerville, 1., and SawyerP., RequirementsEngineering: a good practice guide.
John Wiley & Sons, Chicester, England, 1997.

Weidenhaupt,K., Pohl, M., Jarke, M. and Haumer, P., Scenariosin system
development: current practice, in IEEE Software, pp. 34-45, March/April, 1998.
Wooldridge, M., and Jenning$\.R., Agent Theories, Architectures,and Languages:
asurvey. In: Wooldridge, M., andJennings,N.R. (eds.)Intelligent Agents, Lecture
Notes in Artificial Intelligence, vol. 890, Springer Verlag, Berlin, 1995, pp. 1-39.

